Efficient Actively Secure OT Extension: 5 Years Later?
(Part 1)

Emmanuela Orsini and Peter Scholl

imec-COSIC, KU Leuven and Aarhus University

1Based on the paper Efficient Actively Secure OT Extension, M. Keller, E. Orsini, P. Scholl CRYPTO 2015

Oblivious transfer - Definition

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive designed to transfer specific
data based on the receiver's choice.

[@ﬂ\l my, b e {0,1}

0!

Sender

Receiver

No further information should be learned by any party

Relevant to this workshop: distribution of keys for GC, Threshold ECDSA, etc..

Extending oblivious transfer - Motivation
e Impagliazzo, Rudich [IR98]
Black-box separation result — OT is impossible without public-key primitives (?)

o Beaver [Beaver96]: OT can be extended

* + Cheap symmetric crypto

OT- extenS|on 2003-2020

Y. Ishai, J. Kilian, K. Nissim, E. Petrank
“Extending oblivious transfers efficiently”, CRYPTO 2003

- G. Asharov, Y. Lindell, T. Schneider, and M. Zohner
More Efficient Oblivious Transfer and Extensions for Faster Secure Computation, ACM CCS 2013

- V. Kolesnikov, R. Kumaresan
Improved OT extension for transferring short secrets, CRYPTO 2013

+ J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra.
A new approach to practical active-secure two-party computation, CRYPTO 2012

+ G. Asharov, Y. Lindell, T. Schneider, and M. Zohner
More efficient oblivious transfer extensions with security for malicious adversaries, EUROCRYPT 2015

+ M. Keller, E. Orsini, P. Scholl

Actively Secure OT Extension with Optimal Overhead, CRYPTO 2015
+ M. Orru, E. Orsini, P. Scholl

Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection, CT-RSA 2017
x D. Masny, P. Rindal

Endemic Oblivious Transfer, CCS 2019

x C. Guo, J. Katz, X. Wang, Y. Yu
Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers, |IEEE S&P 2020

* E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Scholl Efficient Pseudorandom Correlation Generators: Silent
OT Extension and More, CRYPTO 2019

OT, Correlated OT and Random OT

23 m, b 2 23 m, b 2
/{E.JJ} m; oT m, Nm‘ //;ffj?\b mg + A coT my (K‘ Y
s | 10 o) ‘

I J6 J ¢ T
Sender Receiver Sender Receiver
Standard OT and COT functionality (Sender chosen message)
o3| mg b E:'w 3 mo b ‘E:\
P Jb m, ROT m .\ AN 2 J mo + A (e m;, m)

= 4N = AN
It J6 I Jt
Sender Receiver Sender Receiver

OT and COT with uniform message security

OT, Correlated OT and Random OT

b
oT my

A
It

=
23\ mg b
/’/fj:?\b mo 1 A coT my q \
I L
Sender Receiver

()
Sender

4k
Standard OT and COT functionality (Sender chosen message)

Receiver

- . }[Q\) m, b
Jt «
Sender Receiver

Sender

Endemic security [MR19]

Receiver

OT, Correlated OT and Random OT

It

Sender

£k
b

Sender

m, b }Eﬁl‘ 29 m b } |
m oT my Q Uﬁ N /’/fj:?\b mo 1 A coT my kN e
T ST T

= ©

Receiver Sender Receiver

Standard OT and COT functionality (Sender chosen message)

mg b E@‘\ ';E} mg b [:'@\\
m, ROT- my, Q\»’S;b\’{ AL —,b my+ A CcoT~ my, Kﬂl
SR =7 &

< > ‘S & = >
Receiver Sender Receiver

Endemic security [MR19]

IKNP OT-extension

£3)
o)

Receiver T“ Sender T
InpUT. (@1, 2m) €{0,1}™ mg,;, my; € {0, 1}k

i€ [m]k<m

1. m COT ti,x ai, A
t; € {0,1}%,4 € [m) ti=q;+x;- A
2. RO mg,, ; = H(t;, 1) +cq, Send:

coi = H(q;,%) +mg;
cii=H(q+ A4 +m;

IKNP OT extension - Security

e Assuming that Phase 1. of the protocol is passively/actively secure then

— IKNP is passively/actively secure when H is a random oracle
— For passive security it is enough for H to be a correlation robust hash function [IKNP03]

— For active security H has to be a tweakable correlation robust hash function

e To achieve active security we need:
— Prove that Phase 1 is secure

1. Achieve security against a malicious receiver

— Secure instantiation of the building blocks

IKNP OT extension - Security

e Assuming that Phase 1. of the protocol is passively/actively secure then

— IKNP is passively/actively secure when H is a random oracle
— For passive security it is enough for H to be a correlation robust hash function [IKNP03]

— For active security H has to be a tweakable correlation robust hash function

e To achieve active security we need:
— Prove that Phase 1 is secure

1. Achieve security against a malicious receiver

— Secure instantiation of the building blocks

Proctecting against a malicious receiver - Attack

q1:t1+x1.A t171+x1~A1 t'f;k+'I1’Ak
q2:t2+x2.A t271+$2'A1 tg7k+x2'Ak:
Q3 =t3+x3-A t31 + 3 Ay t§7k+tx3-Ak

qm = tm + X A tm,l + T - A1 R tnL,k + Ty Ak

Protecting against a malicious receiver - Attack

q1=t1+(A1,O,...,O) t171+A1 t’f}k

a2 = ta + (0,A,0,...,0) t2,1 t22+ Ao 15 1
ts1 o

q3:t3+(0307A3a05"'?0) ' ;
tm,1 e o bk + Ag

® Cp,1 = H(ql,].) + mop 1 = H(t1 + (Al,O, e ,0)7].) + myp 1, can extract Al

e Repeating the attack can recover the entire A and hence all the messages

Protecting against a malicious receiver - Consistency check

InpPUT

m COT™

CHECK

RO

Receiver it

(xlu e 7xm) € {07 1}771
($m+1, . .,xm/) S {O, 1}m -,
m —m=~k+s

t,’,,X
t; € {0,1}%i € [m/]

Receive X1, ..., Xm’ € For
Send t = Zz thz and x = Zz XiZy

mg, i = H(tL7 Z) + Cayi

A

)

Sender 5 ¢

mo,i, my,; € {0, 1}*
ie[m'],k<m

i, A
qtti=z-A

Compute ¢ = Y, x:¢; and check that
t=q+x-A

coi = H(qi, 1) + mo;
cii=H(qi+Ai)+mi;

10

Part Il: Instantiating the Primitives; and Silent OT Extension

11

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (OT or OT™) 2% (COT~, ROT™ or OT)

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (OT or OT™) 2% (COT~, ROT™ or OT)

« (OT or OT") 2224 ROT

12

Instantiating the Base OTs [Masny-Rindal 19]

¢ (OT or OT") —— (COT~, ROT™ or OT)

OT-ext

« (OT or OT") 2ZT£% ROT

INPUT
1. m COT
2. CHECK
3. RO

i
Receiver St

&1 € {07 1}

t,r1 € {0,1}*
t € {0,1}F

m,, = H(t,1)

Some instantiations allow corrupt parties to bias random-OT outputs

2
f;’.;)}
Sender 5 ¢

q, A
qtt=z1-A

mgy = H(qvl)

m; = H(q+ A, 1)

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (0T or OT7) 2% (COT~, ROT™ or OT)

« (OT or OT") 2ZT£% ROT

<3l

Uhn, £
Receiver H Sender & 1
INPUT T € {()7 1}
1. mcoT 0¢c {0,1}* q, A
0,$1 =1 q= A
2. CHECK
3. RO m; = H(0,1) m, = H(q,1)
m; = I{(O7 1)

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (OT or OT™) 2% (COT~, ROT™ or OT)

« (OT or OT") 2224 ROT

e COT™ or ROT™ enough for OT and most applications
— But not always: e.g. be careful with ROT™ and some PSI protocols

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (OT or OT™) 2% (COT~, ROT™ or OT)

(0T or OT7) 2L2% ROT

COT™ or ROT™ enough for OT and most applications
— But not always: e.g. be careful with ROT™ and some PSI protocols

If true ROT needed, protocols can be modified:
o1~ 2= coTm < ROT

12

Instantiating the hash function H(x,i) [GKWY 20]

Security requirement: form of correlation robustness

13

Instantiating the hash function H(x,i) [GKWY 20]

Security requirement: form of correlation robustness

e SHA 256: straightforward, but slow

o Fixed-key block cipher, e.g. AES

— ~ 10x faster
— Incorporating index i: can be done with one extra AES call [GKWY20]

13

Instantiating the hash function H(x,i) [GKWY 20]

Security requirement: form of correlation robustness

e SHA 256: straightforward, but slow

o Fixed-key block cipher, e.g. AES

— ~ 10x faster
— Incorporating index i: can be done with one extra AES call [GKWY20]

e What if ¢ is omitted?
— Can lead to attack, depending on base OTs [MR19]

13

Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]

- €Ty

oT

B € FQk

14

Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]

ey

oT

- € FQk

»

-, TZ+A

As vectors: variant of vector-OLE with b; € Fy

e] v] []

14

Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]
- G]FQ Gsz

oT

As vectors: variant of vector-OLE with b; € Fy
- I - S -

Silent OT: compress vector-OLE with a pseudorandom correlation generator (PCG)

14

From a PCG to Silent OT Extension

1. Setup protocol for generating keys [BCGIKRS19, SGRR19]

— 2-round setup for puncturable PRF

2. Malicious security [BCGIKRS19,YWLZW20]

— Consistency check (similar to [KOS15]), < 10% overhead

15

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN:

generator matrix G

+ ~

16

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN:

generator matrix G

‘I+ %

limited to quadratic stretch

G can be sparse = faster

16

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN: Dual-LPN:
generator matrix G parity check matrix H
‘ + % I
limited to quadratic stretch arbitrary polynomial stretch
G can be sparse = faster H must be dense; use quasi-cyclic codes

16

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN: Dual-LPN:
generator matrix G parity check matrix H
‘ + % I
limited to quadratic stretch arbitrary polynomial stretch
G can be sparse = faster H must be dense; use quasi-cyclic codes
Security as in [Ale03] Security as in BIKE, HQC schemes

16

Comparing practical, actively secure OT extension protocols

128-bit security; estimates for 10 million random OTs

Reference Silent Rounds Communication Computation Based on
[KOS15] X 3/5* 160 MB ~0.2s crh
[BCGIKRS19] v 2/4* 80 kB ~ 2.0s QC-reg-LPN, crh
[YWLZW20] v o(1) 2.4 MB ~ 0.3s sparse-reg-LPN, crh
[YWLZW20] v 0(1) 2.1 MB ~ 0.2s sparse-LPN, crh

* passive/active;

crh = correlation robust hash function

17

Conclusion

e Pitfalls when implementing OT extension
— Take care with hashing, and security of random OT

e Many flavours of OT extension to choose from:
— Correlated OT, random OT
— l-out-of-2, 1-out-of-N
— IKNP-style, silent

18

